Short Description:
This program visualizes total revenue per product using a bar chart based on grouped sales data.
● Created a DataFrame using product sales data.
● Calculated a new column 'Revenue' by multiplying Quantity and Price.
● Grouped the data by 'Product' and summed the revenue for each product.
● Used plt.bar()
to draw a bar chart of total revenue per product.
● Set the title and axis labels to explain what the chart shows.
● Used tight_layout()
to ensure everything fits neatly in the plot area.
Program:
import matplotlib.pyplot as plt
import pandas as pd
# Sample data
data = {
'OrderID': [101, 102, 103, 104],
'Product': ['Laptop', 'Tablet', 'Smartphone', 'Headphones'],
'Quantity': [2, 5, 3, 10],
'Price': [750, 300, 500, 50],
'Date': ['2025-01-01', '2025-01-01', '2025-01-02', '2025-01-02']
}
# Create DataFrame
df = pd.DataFrame(data)
# Calculate total revenue per order
df['Revenue'] = df['Quantity'] * df['Price']
# Group by Product and sum revenue
revenue_by_product = df.groupby('Product')['Revenue'].sum()
# Plotting the bar chart
plt.figure(figsize=(8, 5))
plt.bar(revenue_by_product.index, revenue_by_product.values, color='orange')
plt.title('Total Revenue by Product')
plt.xlabel('Product')
plt.ylabel('Total Revenue')
plt.tight_layout()
plt.show()
Output:
Trainings :
Data Science Training in Indore | Data Analytics Training in Indore | Python Training in Indore | Blockchain Training in Indore | React JS Training in Indore | Web Development Training in Indore | Full Stack Development Training in Indore |Free Courses and Resource :
Verbal Aptitude | Matplotlib Tutorials | Examples | Interview Questions | Pandas Tutorials | Projects | Interview Questions | OpenCV Tutorials | Projects | Interview Questions | ExpressJS Tutorials | Projects | Interview Questions | Dart | Python Data Structures and Algorithms | Rust Tutorials | Projects | Interview Questions | Aptitude Tests | HackerRank Python | Django | MongoDB Tutorials | Examples | Interview Questions | NumPy Practice Questions | Python Tutorials by CodersDaily | Golang Tutorials | Projects | Interview Questions | React.js Tutorials | Verbal Ability Tutorial | MS Sql Server Tutorials | Examples | Interview Questions | Power BI Tutorials | Projects | Interview Questions | Example Dashboards | Numpy Tutorials | Projects | Interview Questions | Django REST Framework Tutorial | HackerRank C++ Solutions | Tensor Flow | Pandas Practice Questions | Python Practice Questions | C++ Tutorials | Quantitative Ability Tutorial | Javascript | Node.js Tutorials | HackerRank SQL Solutions | HackerRank DSA Solutions | Verbal Aptitude 2 | HackerRank Java Solutions | HTML Tutorial | TCS NQT Mock Test Series | Reasoning Ability Tutorial | CodeChef Python Solutions | HackerRank C Program Solutions | Leetcode Python Solutions | SQL Practice Question | Matplotlib Practice Questions |Interview Questions :
Pandas Tutorials | Projects | Interview Questions | ExpressJS Tutorials | Projects | Interview Questions | Django | Python Tutorials by CodersDaily | Golang Tutorials | Projects | Interview Questions | Numpy Tutorials | Projects | Interview Questions | Django REST Framework Tutorial | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions |Top Colleges in India :
Indian Institute of Technology Bombay | Jaypee University of Engineering and Technology - Guna |