Instagram
youtube
Facebook
Twitter

Fill Missing Values in a Pandas DataFrame with a Specific Value

   Fill Missing Values in a Pandas DataFrame with a Specific Value
   
     Short Description of the Program:

     This program replaces all missing values (NaN) in a DataFrame with a specific value such as 0 for numeric columns or           'Unknown' for text columns.
     
      Explanation:

  • fillna(value): Used to fill NaN values with a given value.
     
  • inplace=True: Applies the changes directly to the original DataFrame.
     
  • Can be applied column-wise for different types of data.
     

Program:

import pandas as pd

import numpy as np

data = {

    'Name': ['Alice', 'Bob', 'Charlie', 'Diana', 'Eva', 'Frank'],

    'Age': [25, np.nan, 22, 28, 26, 35],

    'Gender': ['Female', 'Male', 'Male', 'Female', 'Female', 'Male'],

    'City': ['New York', 'Los Angeles', np.nan, 'Houston', 'Phoenix', 'Seattle']

}
df = pd.DataFrame(data)

df['Age'].fillna(0, inplace=True)

df['City'].fillna('Unknown', inplace=True)

print(df)