Instagram
youtube
Facebook
Twitter

Combine Matplotlib with Seaborn Plots

Description:
This code combines a Seaborn bar plot for revenue with a Matplotlib line plot to show units sold, allowing for a more detailed comparison.

Code Explanation:

  • First, we import the necessary libraries:

    • pandas for data manipulation

    • seaborn for statistical plotting

    • matplotlib for additional customizations

  • We create a sample DataFrame containing product names, revenue, and units sold.

  • A Seaborn bar plot is used to plot the revenue for each product (sns.barplot()).

  • We add a line plot on top of the bar plot using Matplotlib to show the units sold for each product. The line is drawn using plt.plot() with markers.

  • Titles, axis labels, and a legend are added for clarity and understanding.

  • Finally, plt.tight_layout() adjusts the layout, and plt.show() displays the final combined plot.


Program:

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

# Sample data
data = {
    'Product': ['A', 'B', 'C', 'D', 'E'],
    'Revenue': [1000, 1500, 1200, 1800, 2200],
    'Units Sold': [10, 12, 9, 14, 16]
}

df = pd.DataFrame(data)

# Creating a seaborn barplot
plt.figure(figsize=(10, 6))
sns.barplot(x='Product', y='Revenue', data=df, color='lightblue')

# Adding a line plot (Matplotlib)
plt.plot(df['Product'], df['Units Sold'], color='red', marker='o', label='Units Sold', linewidth=2)

# Formatting the plot
plt.title('Revenue and Units Sold by Product')
plt.xlabel('Product')
plt.ylabel('Values')
plt.legend()

# Show plot
plt.tight_layout()
plt.show()


Output: