Instagram
youtube
Facebook
Twitter

Group and Plot Quarterly Sales

Description:
This code groups daily sales data into quarters and plots the total sales per quarter using a bar chart.

Code Explanation:

  • A list of sales is spread across 6 months (approx. 2 quarters).

  • The data is grouped into quarters (Jan–Mar = Q1, Apr–Jun = Q2, etc.).

  • We sum sales in each quarter using resample('Q').

  • A bar chart shows how each quarter's total sales compare.

  • It helps to identify seasonal trends and performance across time.

Program:

import pandas as pd
import matplotlib.pyplot as plt

# Sample sales data over multiple months
data = {
    'Date': pd.date_range(start='2024-01-01', periods=180, freq='D'),
    'Sales': [100 + i % 30 for i in range(180)]  # Simulated sales data
}

df = pd.DataFrame(data)

# Convert date to datetime and set as index
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)

# Group by quarter and calculate total sales
quarterly_sales = df.resample('Q').sum()

# Plot
plt.figure(figsize=(8, 5))
plt.bar(quarterly_sales.index.strftime('%Y-Q%q'), quarterly_sales['Sales'], color='skyblue')

# Formatting
plt.title('Quarterly Sales')
plt.xlabel('Quarter')
plt.ylabel('Total Sales')
plt.grid(axis='y')
plt.tight_layout()

# Show the plot
plt.show()


Output: