Description:
A Python program that loads a CSV file using pandas and visualizes product-wise revenue using a bar chart.
Code Explanation:
• Imports pandas
for data manipulation and matplotlib.pyplot
for visualization.
• Reads the CSV file "sales_data.csv"
using pd.read_csv()
.
• Creates a new column Revenue
by multiplying the Quantity
and Price
.
• Groups the data by 'Product'
and sums the revenue using groupby()
and sum()
.
• Plots a bar chart of total revenue per product using plot(kind='bar')
.
• Adds a title and axis labels with plt.title()
, plt.xlabel()
, and plt.ylabel()
.
• plt.grid(True)
shows grid lines for better readability.
• plt.tight_layout()
adjusts layout spacing, and plt.show()
displays the chart.
sales_data.csv File:
OrderID,Product,Quantity,Price,Date
101,Laptop,2,750,2025-01-01
102,Tablet,5,300,2025-01-01
103,Smartphone,3,500,2025-01-02
104,Headphones,10,50,2025-01-02
Program:
import pandas as pd
import matplotlib.pyplot as plt
# Load CSV file
df = pd.read_csv("sales_data.csv") # Make sure the file is in the correct path
# Calculate revenue per product
df['Revenue'] = df['Quantity'] * df['Price']
revenue_by_product = df.groupby('Product')['Revenue'].sum()
# Plot revenue by product
plt.figure(figsize=(6, 5))
revenue_by_product.plot(kind='bar', color='orange')
# Add labels and title
plt.title("Total Revenue by Product")
plt.xlabel("Product")
plt.ylabel("Revenue")
plt.grid(True)
# Show the plot
plt.tight_layout()
plt.show()
Output:
Trainings :
Data Science Training in Indore | Data Analytics Training in Indore | Python Training in Indore | Blockchain Training in Indore | React JS Training in Indore | Web Development Training in Indore | Full Stack Development Training in Indore |Free Courses and Resource :
Verbal Aptitude | Matplotlib Tutorials | Examples | Interview Questions | Pandas Tutorials | Projects | Interview Questions | OpenCV Tutorials | Projects | Interview Questions | ExpressJS Tutorials | Projects | Interview Questions | Dart | Python Data Structures and Algorithms | Rust Tutorials | Projects | Interview Questions | Aptitude Tests | HackerRank Python | Django | MongoDB Tutorials | Examples | Interview Questions | NumPy Practice Questions | Python Tutorials by CodersDaily | Golang Tutorials | Projects | Interview Questions | React.js Tutorials | Verbal Ability Tutorial | MS Sql Server Tutorials | Examples | Interview Questions | Power BI Tutorials | Projects | Interview Questions | Example Dashboards | Numpy Tutorials | Projects | Interview Questions | Django REST Framework Tutorial | HackerRank C++ Solutions | Tensor Flow | Pandas Practice Questions | Python Practice Questions | C++ Tutorials | Quantitative Ability Tutorial | Javascript | Node.js Tutorials | HackerRank SQL Solutions | HackerRank DSA Solutions | Verbal Aptitude 2 | HackerRank Java Solutions | HTML Tutorial | TCS NQT Mock Test Series | Reasoning Ability Tutorial | CodeChef Python Solutions | HackerRank C Program Solutions | Leetcode Python Solutions | SQL Practice Question | Matplotlib Practice Questions |Interview Questions :
Pandas Tutorials | Projects | Interview Questions | ExpressJS Tutorials | Projects | Interview Questions | Django | Python Tutorials by CodersDaily | Golang Tutorials | Projects | Interview Questions | Numpy Tutorials | Projects | Interview Questions | Django REST Framework Tutorial | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions | Matplotlib Practice Questions |Top Colleges in India :
Indian Institute of Technology Bombay | Jaypee University of Engineering and Technology - Guna |