Instagram
youtube
Facebook
Twitter

Format Values in Axis Labels

Description:
This code filters and plots the sales data, displaying only the days where sales are greater than 100. The filtered data is then visualized as a line chart.

Code Explanation:

🔹 Data Preparation:

  • A dictionary is created with 'Date' and 'Sales' for 10 consecutive days.

  • A pandas.DataFrame is formed using this dictionary.

🔹 Data Filtering:

  • df['Sales'] > 100 filters out rows where sales are 100 or less.

  • Result is stored in filtered_df.

🔹 Plotting:

  • Line plot is drawn using filtered_df['Date'] vs filtered_df['Sales'].

  • marker='o' adds dots on each data point.

  • color='green' sets the line color.

  • plt.xticks(rotation=45) improves x-label readability.

  • Title, axis labels, grid, and legend are added for clarity.

🔹 Displaying the Plot:

  • plt.show() renders the chart.


Program:

import matplotlib.pyplot as plt
import pandas as pd

# Sample data
data = {
    'Date': pd.date_range(start='2024-01-01', periods=10, freq='D'),
    'Sales': [80, 120, 90, 150, 200, 60, 180, 110, 95, 130]
}
df = pd.DataFrame(data)

# Data Filtering: Keep only sales greater than 100
filtered_df = df[df['Sales'] > 100]

# Plotting the filtered data
plt.figure(figsize=(8, 5))
plt.plot(filtered_df['Date'], filtered_df['Sales'], marker='o', color='green', label='Sales > 100')

# Formatting
plt.title('Filtered Sales (Only Sales > 100)')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.xticks(rotation=45)  # Rotate x-axis labels for readability
plt.grid(True)
plt.legend()
plt.tight_layout()

# Displaying the plot
plt.show()


Output: